A unified approach to approximating resource allocation and scheduling
Abstract
We present a general framework for solving resource allocation and scheduling problems. Given a resource of fixed size, we present algorithms that approximate the maximum throughput or the minimum loss by a constant factor. Our approximation factors apply to many problems, among which are: (i) real-time scheduling of jobs on parallel machines, (ii) bandwidth allocation for sessions between two endpoints, (iii) general caching, (iv) dynamic storage allocation, and (v) bandwidth allocation on optical line and ring topologies. For some of these problems we provide the first constant factor approximation algorithm. Our algorithms are simple and efficient and are based on the local-ratio technique. We note that they can equivalently be interpreted within the primal-dual schema.