Publication
MM 2005
Conference paper

A Web-based system for collaborative annotation of large image and video collections: An evaluation and user study

View publication

Abstract

Annotated collections of images and videos are a necessary basis for the successful development of multimedia retrieval systems. The underlying models of such systems rely heavily on quality and availability of large training collections. The annotation of large collections, however, is a time-consuming and error prone task as it has to be performed by human an-notators. In this paper we present the IBM Efficient Video Annotation (EVA) system, a server-based tool for semantic concept annotation of large video and image collections. It is optimised for collaborative annotation and includes features such as workload sharing and support in conducting inter-annotator analysis. We discuss initial results of an ongoing user-evaluation of this system. The results are based on data collected during the 2005 TRECVID Annotation Forum, where more than 100 annotators have been using the system. Copyright © 2005 ACM.

Date

Publication

MM 2005

Authors

Topics

Share