Publication
Applied Physics Letters
Paper

Admittance spectroscopy of polymer-nanoparticle nonvolatile memory devices

View publication

Abstract

Nonvolatile resistive memory consisting of gold nanoparticles embedded in the conducting polymer poly(4-n-hexylphenyldiphenylamine) examined using admittance spectroscopy. The frequency dependence of the devices indicates space-charge-limited transport in the high-conductivity "on" state, as well as evidence for similar transport in the lower-conductivity "off" state. Furthermore, the larger dc capacitance of the on state indicates that a greater amount of filling of the midgap nanoparticle trap levels increases the overall device conductivity, leading to the memory effect. © 2006 American Institute of Physics.

Date

Publication

Applied Physics Letters

Authors

Share