Analysis of a one-billion atom simulation of work-hardening in ductile materials
Abstract
We analyze a large-scale molecular dynamics simulation of work hardening in a ductile model material comprising of 500 million atoms interacting with a Lennard-Jones pair potential within a classical molecular dynamics scheme. With tensile loading, we observe emission of thousands of dislocations from two sharp cracks. The dislocations interact in a complex way, revealing three fundamental mechanisms of work-hardening. These are (1) dislocation cutting processes, jog formation and generation of point defects; (2) activation of secondary slip systems by cross-slip; and (3) formation of sessile Lomer-Cottrell locks. The dislocations self-organize into a complex sessile defect topology. Our analysis illustrates mechanisms formerly only known from textbooks and observed indirectly in experiment. It is the first time that such a rich set of fundamental phenomena has been seen in a single computer simulation. © 2004 Materials Research Society.