Publication
The Journal of Chemical Physics
Paper
Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants
Abstract
The first order electric field correlation function of laser light scattered by polydisperse solutions of macromolecules can be written as a sum or distribution of exponentials, with decay rates proportional to the diffusion coefficients of the solute molecules. It is shown that the logarithm of this correlation function is formally equivalent to a cumulant generating function. A method is described by which the distribution function of the decay rates (and thus the extent of polydispersity) can be characterized, in a light scattering experiment, by calculation of the moments or cumulants. The systematic and random statistical errors in the calculated cumulants are discussed.