Bio-Inspired Call-Stack Reconstruction for Performance Analysis
Abstract
The correlation of performance bottlenecks and their associated source code has become a cornerstone of performance analysis. It allows understanding why the efficiency of an application falls behind the computer's peak performance and enabling optimizations on the code ultimately. To this end, performance analysis tools collect the processor call-stack and then combine this information with measurements to allow the analyst comprehend the application behavior. Some tools modify the call-stack during run-time to diminish the collection expense but at the cost of resulting in non-portable solutions. In this paper, we present a novel portable approach to associate performance issues with their source code counterpart. To address it, we capture a reduced segment of the call-stack (up to three levels) and then process the segments using an algorithm inspired by multi-sequence alignment techniques. The results of our approach are easily mapped to detailed performance views, enabling the analyst to unveil the application behavior and its corresponding region of code. To demonstrate the usefulness of our approach, we have applied the algorithm to several first-time seen in-production applications to describe them finely, and optimize them by using tiny modifications based on the analyses.