Characteristics of InGaN-AlGaN multiple-quantum-well laser diodes
Abstract
We demonstrate room-temperature pulsed current-injected operation of InGaAIN heterostructure laser diodes with mirrors fabricated by chemically assisted ion beam etching. The multiple-quantum-well devices were grown by organometallic vapor phase epitaxy on c-face sapphire substrates. The emission wavelengths of the gain-guided laser diodes were in the range from 419 to 432 nm. The lowest threshold current density obtained was 20 kA/cm 2 with maximum output powers of 50 mW. Longitudinal Fabry-Perot modes are clearly resolved in the high-resolution optical spectrum of the lasers, with a spacing consistent with the cavity length. Cavity length studies on a set of samples indicate that the distributed losses in the structure are on the order of 30-40 cm -1.