Publication
ACM TOIT
Paper

Cost-aware cloud bursting for enterprise applications

View publication

Abstract

The high cost of provisioning resources to meet peak application demands has led to the widespread adoption of pay-as-you-go cloud computing services to handle workload fluctuations. Some enterprises with existing IT infrastructure employ a hybrid cloud model where the enterprise uses its own private resources for the majority of its computing, but then "bursts" into the cloud when local resources are insufficient. However, current commercial tools rely heavily on the system administrator's knowledge to answer key questions such as when a cloud burst is needed and which applications must be moved to the cloud. In this article, we describe Seagull, a system designed to facilitate cloud bursting by determining which applications should be transitioned into the cloud and automating the movement process at the proper time. Seagull optimizes the bursting of applications using an optimization algorithm as well as a more efficient but approximate greedy heuristic. Seagull also optimizes the overhead of deploying applications into the cloud using an intelligent precopying mechanism that proactively replicates virtualized applications, lowering the bursting time from hours to minutes. Our evaluation shows over 100% improvement compared to solutions but produces more expensive solutions compared to ILP. However, the scalability of our greedy algorithm is dramatically better as the number of VMs increase. Our evaluation illustrates scenarios where our prototype can reduce cloud costs by more than 45% when bursting to the cloud, and that the incremental cost added by precopying applications is offset by a burst time reduction of nearly 95%.

Date

Publication

ACM TOIT

Authors

Share