Publication
Journal of Parallel and Distributed Computing
Paper

Distributed recovery with K-optimistic logging

View publication

Abstract

Fault-tolerance techniques based on checkpointing and message logging have been increasingly used in real-world applications to reduce service down-time. Most industrial applications have chosen pessimistic logging because it allows fast and localized recovery. The price that they must pay, however, is the high failure-free overhead. In this paper, we introduce the concept of K-optimistic logging where K is the degree of optimism that can be used to fine-tune the trade-off between failure-free overhead and recovery efficiency. Traditional pessimistic logging and optimistic logging then become the two extremes in the entire spectrum spanned by K-optimistic logging. Our results generalize several previously known protocols. Our approach is to prove that only dependencies on those states that may be lost upon a failure need to be tracked on-line, and so transitive dependency tracking can be performed with a variable-size vector. The size of the vector piggy-backed on a message then indicates the number of processes whose failures may revoke the message, and K corresponds to the upper bound on the vector size. Furthermore, the parameter K is dynamically tunable in response to changing system characteristics. © 2003 Published by Elsevier Inc.

Date

Publication

Journal of Parallel and Distributed Computing

Authors

Topics

Share