Electrographic waveform structure predicts laminar focus location in a model of temporal lobe seizures in vitro
Abstract
Temporal lobe epilepsy is the most common form of partial-onset epilepsy and accounts for the majority of adult epilepsy cases in most countries. A critical role for the hippocampus (and to some extent amygdala) in the pathology of these epilepsies is clear, with selective removal of these regions almost as effective as temporal lobectomy in reducing subsequent seizure risk. However, there is debate about whether hippocampus is 'victim' or 'perpetrator': The structure is ideally placed to 'broadcast' epileptiform activity to a great many other brain regions, but removal often leaves epileptiform events still occurring in cortex, particularly in adjacent areas, and recruitment of the hippocampus into seizure-like activity has been shown to be difficult in clinically-relevant models. Using a very simple model of acute epileptiform activity with known, single primary pathology (GABAA Receptor partial blockade), we track the onset and propagation of epileptiform events in hippocampus, parahippocampal areas and neocortex. In this model the hippocampus acts as a potential seizure focus for the majority of observed events. Events with hippocampal focus were far more readily propagated throughout parahippocampal areas and into neocortex than vice versa. The electrographic signature of events of hippocampal origin was significantly different to those of primary neocortical origin - a consequence of differential laminar activation. These data confirm the critical role of the hippocampus in epileptiform activity generation in the temporal lobe and suggest the morphology of non-invasive electrical recording of neocortical interictal events may be useful in confirming this role.