Fabrication and Characterization of Hybrid Stealth Liposomes
Abstract
Next-generation liposome systems for anticancer and therapeutic delivery require the precise insertion of stabilizing polymers and targeting ligands. Many of these functional macromolecules may be lost to micellization as a competing self-assembly landscape. Here, hybrid stealth liposomes, which utilize novel cholesteryl-functionalized block copolymers as the molecular stabilizer, are explored as a scalable platform to address this limitation. The employed block copolymers offer resistance to micellization through multiple liposome insertion moieties per molecule. A combination of thermodynamic and structural investigations for a series of hybrid stealth liposome systems suggests that a critical number of cholesteryl moieties per molecule defines whether the copolymer will or will not insert into the liposome bilayer. Colloidal stability of formed hybrid stealth liposomes further corroborates the critical copolymer architecture value.