Fluorescence of poly(di-n-alkylsilane)s in room-temperature solution
Abstract
A comprehensive study of the electronic absorption and emission spectra and the fluorescence quantum yield and lifetime of seven poly(di-n-alkylsilane)s and of three isotopically labelled poly(di-n-hexylsilane)s in hydrocarbon solution at room temperature is reported. Also reported are fluorescence polarization and carbon tetrachloride quenching of fluorescence of poly(di-n-hexylsilane). The observed fluorescence spectra, quantum yield, and polarization depend on the selected excitation energy in a very characteristic fashion, whereas the fluorescence lifetime does not; however, it depends on the selected emission energy. These characteristic dependencies are qualitatively accounted for by the previously proposed segment distribution model if one assumes that the photophysical behavior at higher excitation energies is strongly affected by the presence of a low-lying weakly allowed state in short-segment chromophores and the behavior at lower excitation energies is dictated by the selective excitation of emitting long-segment chromophores. © 1991 Plenum Publishing Corporation.