GC-Flow: A Graph-Based Flow Network for Effective Clustering
Abstract
Graph convolutional networks (GCNs) are discriminative models that directly model the class posterior p(y|x) for semi-supervised classification of graph data. While being effective, as a representation learning approach, the node representations extracted from a GCN often miss useful information for effective clustering, because the objectives are different. In this work, we design normalizing flows that replace GCN layers, leading to a generative model that models both the class conditional likelihood p(x|y) and the class prior p(y). The resulting neural network, GCFlow, retains the graph convolution operations while being equipped with a Gaussian mixture representation space. It enjoys two benefits: it not only maintains the predictive power of GCN, but also produces well-separated clusters, due to the structuring of the representation space. We demonstrate these benefits on a variety of benchmark data sets. Moreover, we show that additional parameterization, such as that on the adjacency matrix used for graph convolutions, yields additional improvement in clustering.