L-Store: A real-time OLTP and OLAP system
Abstract
To derive real-time actionable insights from the data, it is important to bridge the gap between managing the data that is being updated at a high velocity (i.e., OLTP) and analyzing a large volume of data (i.e., OLAP). However, there has been a divide where specialized solutions were often deployed to support either OLTP or OLAP workloads but not both; thus, limiting the analysis to stale and possibly irrelevant data. In this paper, we present Lineage-based Data Store (L-Store) that combines the realtime processing of transactional and analytical workloads within a single unified engine by introducing a novel update-friendly lineage-based storage architecture. By exploiting the lineage, we develop a contention-free and lazy staging of columnar data from a write-optimized form (suitable for OLTP) into a read-optimized form (suitable for OLAP) in a transactionally consistent approach that supports querying and retaining the current and historic data.