Publication
Journal of Tribology
Paper

Magnetic head-media interface temperatures-part 3: Application to rigid disks

View publication

Abstract

A thermal analysis has been used to predict transient temperature rises at a typical head-particulate-disk interface and a head-thin-film-disk interface. Thermal properties of the various thin-films used in the construction of magnetic rigid disks are measured. A verage and maximum transient temperature rises for the assumed headparticulate-disk interface over the contact area are 34 and 44° C, respectively for an Al2O3-TiC slider. If the exposed magnetic particles or alumina particles contact the slider surface, the transient temperature rise could be more than 1000°C. Average and maximum transient temperature rises for the assumed head-thin-film-disk interface over the contact area are 56 and 81° C, respectively for an Al2O3-TiC slider and 77 and 110°C, respectively for an Mn-Zn ferrite slider. The durations of asperity contact generally are less than 100 ns. The thermal gradients perpendicular to the sliding surfaces are very large (a temperature drop of 90 percent in a depth of typically less than a contact diameter or less than a micron). © 1992 by ASME.

Date

Publication

Journal of Tribology

Authors

Topics

Share