MILEPOST GCC: Machine learning based research compiler
Abstract
Tuning hardwired compiler optimizations for rapidly evolving hardware makes porting an optimizing compiler for each new platform extremely challenging. Our radical approach is to develop a modular, extensible, self-optimizing compiler that automatically learns the best optimization heuristics based on the behavior of the platform. In this paper we describe MILEPOST1 GCC, a machine-learning-based compiler that automatically adjusts its optimization heuristics to improve the execution time, code size, or compilation time of specific programs on different architectures. Our preliminary experimental results show that it is possible to considerably reduce execution time of the MiBench benchmark suite on a range of platforms entirely automatically.