Mixed block placement via fractional cut recursive bisection
Abstract
Recursive bisection is a popular approach for large scale circuit placement problems, combining a high degree of scal-ability with good results. In this paper, we present a bisection-based approach for both standard cell and mixed block placement; in contrast to prior work, our horizontal cut lines are not restricted to row boundaries. This technique, which we refer to as a fractional cut, simplifies mixed block placement and also avoids a narrow region problem encountered in standard cell placement. Our implementation of these techniques in the placement tool Feng Shui 2.6 retains the speed and simplicity for which bisection is known, while making it competitive with leading methods on standard cell designs. On mixed block placement problems, we obtain substantial improvements over recently published work. Half perimeter wire lengths are reduced by 29% on average, compared to a flow based on Capo and Parquet; compared to mPG-ms, wire lengths are reduced by 26% on average. © 2005 IEEE.