On Optimizing Distributed Tucker Decomposition for Dense Tensors
Abstract
The Tucker decomposition expresses a given tensor as the product of a small core tensor and a set of factor matrices. Our objective is to develop an efficient distributed implementation for the case of dense tensors. The implementation is based on the HOOI (Higher Order Orthogonal Iterator) procedure, wherein the tensor-times-matrix product forms the core routine. Prior work have proposed heuristics for reducing the computational load and communication volume incurred by the routine. We study the two metrics in a formal and systematic manner, and design strategies that are optimal under the two fundamental metrics. Our experimental evaluation on a large benchmark of tensors shows that the optimal strategies provide significant reduction in load and volume compared to prior heuristics, and provide up to 7x speed-up in the overall running time.