Optimal control methods for rapidly time-varying Hamiltonians
Abstract
In this article, we develop a numerical method to find optimal control pulses that accounts for the separation of timescales between the variation of the input control fields and the applied Hamiltonian. In traditional numerical optimization methods, these timescales are treated as being the same. While this approximation has had much success, in applications where the input controls are filtered substantially or mixed with a fast carrier, the resulting optimized pulses have little relation to the applied physical fields. Our technique remains numerically efficient in that the dimension of our search space is only dependent on the variation of the input control fields, while our simulation of the quantum evolution is accurate on the timescale of the fast variation in the applied Hamiltonian. © 2011 American Physical Society.