Optimal process planning for laser forming of doubly curved shapes
Abstract
There has been a considerable amount of work carried out on two-dimensional laser forming. In order to advance the process further for industrial applications, however, it is necessary to consider more general cases and especially their process planning aspect. This paper presents an optimal approach to laser scanning paths and heating condition determination for laser forming of doubly curved shapes. Important features of the approach include the strain field calculation based on principal curvature formulation and minimal strain optimization, and scanning paths and heating condition determination by combining analytical and practical constraints. The overall methodology is presented first, followed by more detailed descriptions of each step of the approach. Two distinctive types of doubly curved shape, pillow and saddle shapes are focused on and the effectiveness of the proposed approach is validated by forming experiments.