Publication
Journal of Pure and Applied Algebra
Paper

P-varieties - a signature independent characterization of varieties of ordered algebras

View publication

Abstract

This paper is concerned mainly with classes (categories) of ordered algebras which in some signature are axiomatizable by a set of inequations between terms ('varieties' of ordered algebras) and also classes which are axiomatizable by implications between inequations ('quasi varieties' of ordered algebras). For example, if the signature contains a binary operation symbol (for the monoid operation) and a constant symbol (for the identity) the class of ordered monoids M can be axiomatized by a set of inequations (i.e. expressions of the form t≤t'. However, if the signature contains only the binary operation symbol, the same class M cannot be so axiomatized (since it is not now closed under subalgebras). Thus, there is a need to find structural, signature independent conditions on a class of ordered algebras which are necessary and sufficient to guarantee the existence of a signature in which the class is axiomatizable by a set of inequations (between terms in this signature). In this paper such conditions are found by utilizing the notion of 'P-categories'. A P-category C is a category such that each 'Hom-set' C(a,b) is equipped with a distiguished partial order which is preserved by composition. Aside from proving the characterization theorem, it is also the purpose of the paper to begin the investigation of P-categories. © 1983.

Date

Publication

Journal of Pure and Applied Algebra

Authors

Topics

Share