Abstract
In this paper, we address a novel problem of automatically creating a picture collage from a group of images. Picture collage is a kind of visual image summaryto arrange all input images on a given canvas, allowing overlay, to maximize visible visual information. We formulate the picture collage creation problem in a conditional random field model, which integrates image salience, canvas constraint, natural preference, and user interaction. Each image is represented by a group of weighted rectangles, which indicate the salient regions. Then picture collage is resolved by minimizing the energy, guided by the constraints. A two-step optimization method is proposed. First, a quick initialization algorithm based on the proposed 1-D collage method is presented. Second, a very efficient Markov chain Monte Carlo method is designed for the refined optimization. We also integrate user interaction in the formulation and optimization to obtain an interactive collage reflecting personalized preference. Visual and quantitative experimental evaluations indicate the efficiency of the proposed collage creation technique. © 2009 IEEE.