Plastic deformation effect on Sn whisker growth in electroplated Sn and Sn-Ag solders
Abstract
Sn whiskers are becoming a serious reliability problem in microelectronics where Pb-free solder technology is being implemented with pure Sn or Sn-rich alloys. Numerous investigations have been performed to understand the whisker growth mechanisms and thereby to mitigate Sn whisker growth. Among many Sn whisker mitigation strategies, minor alloying additions to Sn have been found to be quite effective. One challenge in evaluating Sn whisker growth is a time-consuming aging test, such as 4000 h testing condition recommended by the JEDEC-JESD201A standard. In this study, several commercial Sn and Sn-Ag baths of low whisker formulations are evaluated. The effects of plating variables and aging conditions on Sn whisker growth are investigated with matte Sn, matte Sn-Ag, and bright Sn-Ag electroplated on a Cu/Ni/Si substrate. The layer thickness and current density are the major plating variables studied. Two different storage conditions are applied; an ambient condition (30°C/dry air), and a high temperature/humidity condition (55°C/85%RH). In addition, the effect of plastic deformation on Sn whisker growth is investigated as an acceleration method for Sn whisker testing. Microhardness indentation technique is applied to electroplated Sn and Sn-Ag samples to plastically deform them before T/H testing. Each sample is examined by SEM at a regular time interval up to 4000 h. Various morphologies of Sn whiskers are observed and their growth statistics are analyzed in terms of plating conditions, plastic deformation and T/H testing conditions. Plastic deformationis found to significantly accelerate Sn whisker growth both in pure Sn and Sn-Ag samples. The method of plastic deformation can be employed to shorten the time-consuming Sn whisker growth testing. © 2013 IEEE.