Polling Systems with Server Timeouts and Their Application to Token Passing Networks
Abstract
Polling systems have long been the subject of study and are of particular interest in the analysis of high-speed communications networks. There are many options for the scheduling policies that can be used at each polling station (exhaustive, gated, customer limited, etc.). In addition, one can impose an upper bound on the total service time delivered to customers at a station per server visit. In the most common case the upper bound is a constant for each polling station, and the resulting system model is not Markovian even when service times and interarrival times are exponential. In this paper, a comprehensive solution is developed for the major scheduling policies with time limits for each polling station. The approach is based on studying the embedded Markov chain defined at the sequence of epochs when the server arrives at each polling station. The computation of transition probabilities for the embedded chain requires transient analysis of the Markov process describing the system evolution between epochs. Uniformization methods are used to develop efficient algorithms for the transition probabilities and for system performance measures. Example problems are solved using the techniques developed to illustrate the utility of the results. © 1995 IEEE