Abstract
The singular value decomposition (SVD) has been extensively used in engineering and statistical applications. This method was originally discovered by Eckart and Young in [Psychometrika, 1 (1936), pp. 211-218], where they considered the problem of low-rank approximation to a matrix. A natural generalization of the SVD is the problem of low-rank approximation to high order tensors, which we call the multidimensional SVD. In this paper, we investigate certain properties of this decomposition as well as numerical algorithms.