Publication
Measurement Science and Technology
Paper

Recent advances in displacement measuring interferometry

View publication

Abstract

The present state of high-resolution displacement measuring interferometry is reviewed. Factors which determine the accuracy, linearity and repeatability of nanometre-scale measurements are emphasized. Many aspects of interferometry are discussed, including general metrology and alignment errors, as well as path length errors. Optical mixing and the nonlinear relation between phase and displacement are considered, as well as the influence of diffraction on accuracy. Environmental stability is a major factor in the repeatability and accuracy of measurement. It is difficult to obtain a measurement accuracy of 10-7 when working in air. Several approaches to improving this situation are described, including multiwavelength interferometry. Recent measurements of the short- and long-term frequency stability of lasers are summarized. Optical feedback is a subtle, but important source of frequency destabilization, and methods of detection and isolation are reviewed. Calibration of phase measuring electronics used for subfringe interpolation is included. Progress in 'in situ' identification of error sources and methods of validating accuracy are emphasized.

Date

Publication

Measurement Science and Technology

Authors

Topics

Share