Publication
SIGMOD 2004
Conference paper

Robust query processing through progressive optimization

View publication

Abstract

Virtually every commercial query optimizer chooses the best plan for a query using a cost model that relies heavily on accurate cardinality estimation. Cardinality estimation errors can occur due to the use of inaccurate statistics, invalid assumptions about attribute independence, parameter markers, and so on. Cardinality estimation errors may cause the optimizer to choose a sub-optimal plan. We present an approach to query processing that is extremely robust because it is able to detect and recover from cardinality estimation errors. We call this approach "progressive query optimization" (POP). POP validates cardinality estimates against actual values as measured during query execution. If there is significant disagreement between estimated and actual values, execution might be stopped and re-optimization might occur. Oscillation between optimization and execution steps can occur any number of times. A re-optimization step can exploit both the actual cardinality and partial results, computed during a previous execution step. Checkpoint operators (CHECK) validate the optimizer's cardinality estimates against actual cardinalities. Each CHECK has a condition that indicates the cardinality bounds within which a plan is valid. We compute this validity range through a novel sensitivity analysis of query plan operators. If the CHECK condition is violated, CHECK triggers re-optimization. POP has been prototyped in a leading commercial DBMS. An experimental evaluation of POP using TPC-H queries illustrates the robustness POP adds to query processing, while incurring only negligible overhead. A case-study applying POP to a real-world database and workload shows the potential of POP, accelerating complex OLAP queries by almost two orders of magnitude.

Date

Publication

SIGMOD 2004