Publication
IEEE/ACM TASLP
Paper

Sentence Compression for Aspect-Based Sentiment Analysis

View publication

Abstract

Sentiment analysis, which addresses the computational treatment of opinion, sentiment, and subjectivity in text, has received considerable attention in recent years. In contrast to the traditional coarse-grained sentiment analysis tasks, such as document-level sentiment classification, we are interested in the fine-grained aspect-based sentiment analysis that aims to identify aspects that users comment on and these aspects' polarities. Aspect-based sentiment analysis relies heavily on syntactic features. However, the reviews that this task focuses on are natural and spontaneous, thus posing a challenge to syntactic parsers. In this paper, we address this problem by proposing a framework of adding a sentiment sentence compression (Sent-Comp) step before performing the aspect-based sentiment analysis. Different from the previous sentence compression model for common news sentences, Sent-Comp seeks to remove the sentiment-unnecessary information for sentiment analysis, thereby compressing a complicated sentiment sentence into one that is shorter and easier to parse. We apply a discriminative conditional random field model, with certain special features, to automatically compress sentiment sentences. Using the Chinese corpora of four product domains, Sent-Comp significantly improves the performance of the aspect-based sentiment analysis. The features proposed for Sent-Comp, especially the potential semantic features, are useful for sentiment sentence compression.

Date

Publication

IEEE/ACM TASLP

Authors

Share