Publication
EDBT 2013
Conference paper

Sparkler: Supporting large-scale matrix factorization

View publication

Abstract

Low-rank matrix factorization has recently been applied with great success on matrix completion problems for applications like recommendation systems, link predictions for social networks, and click prediction for web search. However, as this approach is applied to increasingly larger datasets, such as those encountered in web-scale recommender systems like Netflix and Pandora, the data management aspects quickly become challenging and form a road-block. In this paper, we introduce a system called Sparkler to solve such large instances of low rank matrix factorizations. Sparkler extends Spark, an existing platform for running parallel iterative algorithms on datasets that fit in the aggregate main memory of a cluster. Sparkler supports distributed stochastic gradient descent as an approach to solving the factorization problem - an iterative technique that has been shown to perform very well in practice. We identify the shortfalls of Spark in solving large matrix factorization problems, especially when running on the cloud, and solve this by introducing a novel abstraction called "Carousel Maps" (CMs). CMs are well suited to storing large matrices in the aggregate memory of a cluster and can efficiently support the operations performed on them during distributed stochastic gradient descent. We describe the design, implementation, and the use of CMs in Sparkler programs. Through a variety of experiments, we demonstrate that Sparkler is faster than Spark by 4x to 21x, with bigger advantages for larger problems. Equally importantly, we show that this can be done without imposing any changes to the ease of programming. We argue that Sparkler provides a convenient and efficient extension to Spark for solving matrix factorization problems on very large datasets. © 2013 ACM.

Date

Publication

EDBT 2013

Authors

Topics

Share