Temperature dependent nano indentation of thin polymer films with the scanning force microscope
Abstract
The scanning force microscope (SFM) was used to investigate the temperature dependent micro mechanical properties of polymethylmethacrylate (PMMA) films with a thickness of 35 nm in the range of the radius of gyration. Force-distance curves were performed in the glass transition range to create permanent nanometric indentations with maximal forces up to 4 μN. Quantitative measurements of the indentation depth during and after application of the force, hysteresis energy and slope of the loading part are carried out as function of sample temperature and applied force. The glass transition of the polymer film can be clearly identified by the change of the mechanical properties of the polymer. Surprisingly, only a small change of elasticity at the glass transition is observed. © 2004 Elsevier Ltd. All rights reserved.