The Hausdorff Voronoi diagram of polygonal objects: A divide and conquer approach
Abstract
We study the Hausdorff Voronoi diagram of a set S of polygonal objects in the plane, a generalization of Voronoi diagrams based on the maximum distance of a point from a polygon, and show that it is equivalent to the Voronoi diagram of 5 under the Hausdorff distance function. We investigate the structural and combinatorial properties of the Hausdorff Voronoi diagram and give a divide and conquer algorithm for the construction of this diagram that improves upon previous results. As a byproduct we introduce the Hausdorff hull, a structure that relates to the Hausdorff Voronoi diagram in the same way as a convex hull relates to the ordinary Voronoi diagram. The Hausdorff Voronoi diagram finds direct application in the problem of computing the critical area of a VLSI Layout, a measure reflecting the sensitivity of a VLSI design to random manufacturing defects, described in a companion paper.13 © World Scientific Publishing Company.