Publication
Physical Review Letters
Paper

Variational Neural-Network Ansatz for Continuum Quantum Field Theory

View publication

Abstract

Physicists dating back to Feynman have lamented the difficulties of applying the variational principle to quantum field theories. In nonrelativistic quantum field theories, the challenge is to parametrize and optimize over the infinitely many n-particle wave functions comprising the state's Fock-space representation. Here we approach this problem by introducing neural-network quantum field states, a deep learning ansatz that enables application of the variational principle to nonrelativistic quantum field theories in the continuum. Our ansatz uses the Deep Sets neural network architecture to simultaneously parametrize all of the n-particle wave functions comprising a quantum field state. We employ our ansatz to approximate ground states of various field theories, including an inhomogeneous system and a system with long-range interactions, thus demonstrating a powerful new tool for probing quantum field theories.

Date

Publication

Physical Review Letters

Authors

Share