Waiting and sojourn times in a multi-server queue with mixed priorities
Abstract
We consider a multi-server queue with K priority classes. In this system, customers of the P highest priorities (P<K) can preempt customers with lower priorities, ejecting them from service and sending them back into the queue. Service times are assumed exponential with the same mean for all classes. The Laplace-Stieltjes transforms of waiting times are calculated explicitly and the Laplace-Stieltjes transforms of sojourn times are provided in an implicit form via a system of functional equations. In both cases, moments of any order can be easily calculated. Specifically, we provide formulae for the steady state means and the second moments of waiting times for all priority classes. We also study some approximations of sojourn-time distributions via their moments. In a practical part of our paper, we discuss the use of mixed priorities for different types of Service Level Agreements, including an example based on a real scheduling problem of IT support teams. © 2009 Springer Science+Business Media, LLC.